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01 Introduction

e Background
o Federated learning can be applied to ASR models to utilize client data.
o Current SOTA ASR model is too large to train on the client devices.
o How can we perform client model training efficiently? -- Network Pruning.

e Motivations
o Traditional pruning methods consider centralized training on server model.
o Leverage the property of federated learning and perform adaptive and
customized network pruning on client models.

e Objective
o Reduce the model size by applying adaptive pruning w/o quality degradation.
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Related Works
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02 Related works

e Lottery Ticket Hypothesis
o A randomly-initialized, dense neural network contains a subnetwork that is

initialized such that—when trained in isolation—it can match the test accuracy
of the original network after training for at most the same number of iterations.

e Traditional Pruning Methods
o Three-stage pipeline: training, pruning and fine-tuning.
o Used the parameter magnitude as the pruning criterion.

1. Frankle, Jonathan, and Michael Carbin. "The lottery ticket hypothesis: Finding sparse, trainable neural networks." arXiv preprint arXiv:1803.03635 (2018).
2. Han, Song, Huizi Mao, and William J. Dally. "Deep compression: Compressing deep neural networks with pruning, trained quantization and huffman coding." arXiv preprint arXiv:1510.00149 (2015).
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02 Related works

e Dynamic Sparse Neural Network Training
o Prune-regrowth procedure that allows the pruned neurons to revive
randomly.
o Dynamic parameter reallocation that changes the global pruning threshold.
(Coarse-grained adjustment: threshold get halved if the percentage of
parameter pruned is too high or get doubled if percentage is too low)
o Free reallocation of parameters between layers.

3. Mocanu, Decebal Constantin, et al. "Scalable training of artificial neural networks with adaptive sparse connectivity inspired by network science." Nature communications 9.1 (2018): 1-12.
4. Mostafa, Hesham, and Xin Wang. "Parameter efficient training of deep convolutional neural networks by dynamic sparse reparameterization." International Conference on Machine Learning. (2019).
5. Zhang, Chiyuan, Samy Bengio, and Yoram Singer. "Are all layers created equal?." arXiv preprint arXiv:1902.01996 (2019).
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02 Comparison to related works

e Unlike these works focusing on centralized training, our work targets at
federated learning (FL) and analyzes the impact of different pruning design
decisions under this setting.

e A related work of model compression under the FL setting is Federated
dropout [6]. Unlike our proposed method, federated dropout randomly
generates reduced model and performs training on full model.

e Another preliminary work, PruneFL |/], also applies pruning with FL. It adopts
sparse pruning instead of structural pruning as used in this work, so the
resultant model will be less efficient when running on devices in practice.

6. D. Guliani, L. Zhou, C. Ryuy, T.-J. Yang, H. Zhang, Y. Xiao, F. Beaufays, and G. Motta, “Enabling on-device training of speech recognition models with federated dropout,” arXiv:2110.03634, (2021).
7.Y. Jiang, S. Wang, B. J. Ko, W. Lee, and L. Tassiulas, “Model pruning enables efficient federated learning on edge devices,” arXiv:1909.12326, (2019).
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03 A federated round of proposed method

Pruning
at server

2. Sending reduced
model to clients
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03 Three phases of Federated Pruning
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03 Pruning patterns & methods

e Pruning methods: the metric used to determine the salience of variable. We
use three methods including (1) weight magnitude of variables, (2) momentum
of gradient magnitude of the variables and the (3) multiplication of weight and
gradient magnitude to measure the salience. To reach target level:

o Constant level: prune to the target sparsity level S at the beginning.
o Step-based level: gradually increase the sparsity level w.r.t current round r.
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Federated Rounds Federated Rounds
(a) Constant Pruning Schedule (b) Step-based Pruning Schedule
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03 Pruning patterns & methods

e Structured pruning pattern: the structure @ Q'Q O i Cﬁ) .
of the pruned variables. { 1000

o  Whole row / column: prune the entire Q0= [8 8 8 8} {8 8 8
row or column of the two-dimensional w 000

weight matrices W.

o Half row / column: evenly partition the
two-dimensional variables W into [W1, ‘000
W2] and prune each half of the row or 000
column.

(a) Whole Column Pruning

(b) Half Column Pruning
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03 Sparsity reallocation process
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(1 — TargetSparsity) * ||w;||

LayerDensity =

[lw_ill: Averaged weight magnitude per layer.
L: the total L layers in the model.

L
Zz‘:l ||ws|

Heuristic agent determine the

layer-wise sparsity level:

e Step 1: use predefined rules to
measure the importance of
each layer (we use ||w_il).

e Step 2: assign the weighted
sparsity level to each layer
using estimated importance
score.

The less important layers get

larger sparsity level.

(i.e. smaller density level)
Google Research



04

Experiment Results

Google Research



04 Experiment settings

e We implemented the Federated Pruning in a distributed learning simulator.

e We use the SOTA ASR model Conformer-transducer as base model. (add
citation)

e Allthe experiments share a same pre-trained baseline model as initialization.
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04 Dataset

e The public LibriSpeech corpus.
o Consists of 970 hours of labeled speech.
e Industry -scale data collected from different domains.
o These multi-domain utterances contain 400k hours of speech and span
domains of search, farfield, telephony and YouTube.
o Our work abides by Google Al Principles, all datasets are anonymized and
hand-transcribed.
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04 Results on short-form multi-domain dataset

Finally, we show the results on the large-scale short-form multidomain
dataset. The reduced model is trained on our multidomain utterances and
evaluated on the short-form dataset. Table 5 demonstrates the WERs on
different sparsity levels. We conclude that our model can still achieve
comparable performance to the baseline model (with sparsity level 0.0) on
challenging dataset in the low sparsity level setting.

Table 5: WERs of federated pruning on the voice search dataset.

Sparsity Level | 0.0 0.10 020 030 040 0.50
WER |64 67 70 714 79 89
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03 Pruning patterns & methods

e Structured pruning pattern: the structure @ Q'Q O i Cﬁ) .
of the pruned variables. { 1000

o  Whole row / column: prune the entire Q0= [8 8 8 8} {8 8 8
row or column of the two-dimensional w 000

weight matrices W.

o Half row / column: evenly partition the
two-dimensional variables W into [W1, ‘000
W2] and prune each half of the row or 000
column.

(a) Whole Column Pruning

(b) Half Column Pruning
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04 Federated pruning results

Word Error Rate (%)

Word Error Rate (%)
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e Quality degradation

when the sparsity level
> 30% in all pruning
schemes.

At sparsity level 50%:
column pruning and
especially the
half-column pruning
consistently
outperforms the
row-based pruning.
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04 Federated pruning results

e Different pruning methods can be used to estimate the importance of
variables. We conduct ablation experiments of different measurements on the
Librispeech dataset. Table 2 suggests the weight-based score achieves similar
WER as other metrics, while it is also the most communication efficient and
stable metric. Thus weight-based score is used as the importance metric.

Table 2: WER:s of different pruning methods

; WER on Test with sparsity level
Pruning Methods |, ,»" v50 030 040 050

weight based 2.1 2.2 2.3 2.4 2.5
gradient based 2.2 2.3 2.3 2.3 2.4
weight X gradient based | 2.1 2.2 2.2 2.3 2.4
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04 Adaptive per-layer sparsity results

e Table 3 demonstrates that, compared to federated pruning with unified
sparsity, the adaptive sparsity achieves lower WERs on all evaluation sets with
50% sparsity level.

Table 3: WERs of unified / adaptive sparsity at Sparsity 50%.

Ex WER
p- Test TestOther Dev  DevOther
Baseline 2.1 4.9 2.3 4.9
Unified Sparsity 2.5 5.9 2.8 5.9
Adaptive Sparsity | 2.4 5.6 2.6 5.7
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04 With and without mask refinement

e The Mask Refinement phase maintains the original values for masked regions.
The pruned variables are allowed to grow back, leading to higher flexibility and
thus, lower WERs as shown in Table 4.

Table 4: WERs of w/o and w/ Mask Refinement at Sparsity 40%.

E WER
Xp- Test TestOther Dev  DevOther
w/o Mask Refine | 2.3 5.5 2.6 5.7
w/ Mask Refine 2.3 5.3 2.5 5.3
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05 Conclusion

Improving the efficiency of federated learning: We propose Federated

Pruning (FP) to leverage on-device data to effectively prune redundant
parameters from models.
Exploring different pruning design decisions: We explore and perform

extensive ablation studies on two design decisions of pruning under
federated learning: pruning patterns and pruning methods.

Proposing a novel approach for adaptive sparsity: We propose a novel
adaptive per-layer sparsity approach that dynamically allocates the target
global sparsity level to each layer.

Experimenting with production-grade environments: We evaluate the
proposed Federated Pruning with production-grade models and datasets,
which better reflects the real condition of deployment.
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Federated Learning (FL)
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Federated Learning (FL)
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Two Main Challenges

Limited on-device memory 3 Costly communication

Keeping hundreds of millions of l / Transporting models in full
parameters in full precision in [ - precision burdens the
memory can exceed the communication network.

available memory.
|
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Proposed Online Model Compression (OMC)

e Idea: store and transmit parameters in a compressed format and decompress

them on the fly during training

- Parameters of layer N

- Parameters of layer 1

Compressed Model
Parameters in Memory

Layer N

R

Layer 1
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Forward Propagation of OMC
Compressed parameters are decompressed, consumed, and deallocated immediately

Transient

(D Decompress @ Consume

T

In — > L N
Memory ayer
Forward
Prop.

. . . . Google Research
* The cubes with dashed borderlines are transient variables.



Backward Propagation of OMC

Step 1, 2: Compressed parameters are decompressed and updated by gradients

Backward
Prop.

@ Decompress l
Layer N

In
Memory -

® Update
Transient

. . . . Google Research
* The cubes with dashed borderlines are transient variables.



Backward Propagation of OMC

Step 3: The updated decompressed parameters are compressed and deallocated

Backward
Prop.
In
Memory Layer N
® Compress

Transient

. . . . Google Research
* The cubes with dashed borderlines are transient variables.



Proposed Online Model Compression (OMC)

e OMC keeps only the compressed parameters and a small number of transient
decompressed copies in the memory

e Decouple compression and hardware-support formats — lower memory/comm.
Implementation of OMC should operate fast and can mitigate error accumulation

Transient ?

-—’.—’ Layer N

- Layer 1

Compressed Model T Google Research
Parameters in Memory
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Quantization-based OMC

e We adopt floating-point quantization as the compression format given its simplicity
e Different from quantization-aware training, quantization-based OMC stores
quantized parameters — lower memory but faster error accumulation

Transient ?

-—>-———> Layer N

6 2.3?

Quanti.-Aware
Training

Word Error Rate

FuII-Pre_cision Quanti_zed
Transient ? (32 bits) (11 bits)

. * Application: automatic speech recognition
Quarg'M%ased -—>.—> * 130M Conformer on multi-domain dataset
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Per-Variable Transformation

e Apply per-variable transformation V=sV+b after decompression to minimize errors
o Storage overhead: 2 scalar values per-variable (scale and bias)
e The scale and bias are computed analytically during compression

7

Apply transform ﬁ 6.75 l 0.4
. S 65
Q) =
Apply transf = = 0
ranstorm
, PPy Layer N 6
Wi/o Trans. W/ Trans.
T l * Application: automatic speech recognition
* 130M Conformer on multi-domain dataset
@ ( * 11 bits
y
Google Research
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Weight-Matrix-Only Quantization

e Observation: different parameter types have different sensitivity to quantization
o Weights are less sensitive than the others but dominate model size
e |dea: quantize only weight matrices and keep remaining parameters in full precision

? 7
@— Norm

T 4
Quantize All  Quantize Weights
-—».—» ConviFF
* Application: automatic speech recognition

T * 130M Conformer on multi-domain dataset
* 11 bits

Not
Compressed

Word Error Rate
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Partial Variable Quantization

e Leverage the feature of FL: many clients train a model in parallel
e |dea: only quantize a subset of weight matrices (per-client)
Every weight matrix can obtain high-quality updates from some clients

©)
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* Application: automatic speech recognition
* 130M Conformer on multi-domain dataset
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Partial Variable Quantization

e Partial variable quantization (PVQ) outperforms all variable quantization (AVQ,
100% quantization) with larger bit-widths

e PVQ + AVQ (S1E3M9) « AVQ (S1E4M8) = AVQ (S1E5M7)

5.50
Example:

S 3% 11-bit PVQ (90% quantized)
outperforms 13-bit AVQ

475 @ & .\-—-4 (100% quantized with various
.\‘\’_4 bit allocations) .

4.50
1000 2000 3000 4000 5000

# Federated Rounds Go gle Research



Experimental Settings

e Application: automatic speech recognition
e Models:
o Production-grade Conformers with 110M or 130M trainable parameters
e Datasets:
o 1ID/non-IID LibriSpeech
o Multi-Domain (MD) dataset contains ~400K hours of anonymized utterances
from domains such as Search, Farfield, Telephony, and YouTube
e Training scenarios:
o From-scratch training: lID/non-I1ID LibriSpeech
o Transfer learning: first train on Non-MF (medium-form domain) from MD and
then finetune on MF
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Experimental Results

e From-scratch training 110M Conformer on |ID/non-I1ID LibriSpeech
o OMC (19 bits) achieves similar WERs as FP32 for both IID and non-IID distributions
o 64% memory usage of parameters and communication cost
o Similar training speed

Data WER Resource
Distribution Parameter Memory/ Communication ~ Speed (Rounds/Min)
D FP32 (32 bits) | 2.1/4.6/2.2/4.8 474MB (100%) 29.5 (100%)
OMC (19 bits)| 2.1/4.7/2.2/4.6 301MB (64%) 26.8 (91%)
Non-IID FP32 (32 bits) | 2.0/4.7/2.2/4.9 474MB (100%) 29.5 (100%)
OMC (19 bits)| 2.0/4.8/2.2/4.9 301MB (64%) 26.8 (91%)

* WERSs in dev/dev-other/test/test-other

Google Research
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Experimental Results

e Transfer learning of 130M Conformer on multi-domain dataset
o  OMC (11 bits) achieves similar WERs as FP32
o  OMC (6 bits) improves upon the before-adaptation model
o 41% and 29% memory usage of parameters and communication cost
o Similar training speed

WER Resource
Parameter Memory/ Communication Speed (Rounds/Min)
Before Adaptation 6.7 - -
FP32 (32 bits) 4.6 548MB (100%) 11.9 (100%)
OMC (11 bits) 4.6 224MB (41%) 11.1 (93%)
OMC (6 bits) 5.9 147MB (29%) 11.1 (93%)

Google Research
Detailed analysis in paper



Experimental Results

e Measured memory usage on Pixel 4 phones
o Implemented with Tensorflow Federated

e Results
o 16-bit OMC achieves the same WERs as the FP32 baseline
o Large Conformer: 197MB peak memory usage reduction (38% of model size)
o Small Conformer: 84MB peak memory usage reduction (45% of model size)

Google Research



Conclusion

e We proposed Online Model Compression (OMC) to enable training large models
with federated learning
o OMC allows to reduce memory usage and communication cost while
maintaining training speed
e Ourimplementation of OMC includes
o Floating point quantization, per-variable transformation, weight-matrix-only
quantization, and partial variable quantization
e The experiments show that OMC can significantly improve FL efficiency with
comparable accuracy as full-precision training
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Overview

Federated learning (FL) has been widely used to train neural networks with the decentralized training procedure
where data is only accessed on clients’ devices for privacy preservation. However, the limited computation
resources on clients’ devices prevent FL of large models. To overcome the computational constraint and enable
FL of the Conformer based ASR models, we propose FedAQT, an accurate quantized training framework under
FL by training with quantized variables directly on clients’ devices. We empirically show that our method can
achieve comparable WER with only 60% memory of the full-precision model.
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Federated Round of FedAQT

1. Quantize: We quantize the full-precision model to the target bit-width on the cloud. Both the full-precision and
low-bit model is kept.

2. Broadcast: Only the low-bit model as well as float scalers will be distributed to the local devices.

3. Client work: To save memory during training, at the client training stage, each device trains the quantized
model only with its own training data.

4. Aggregation and model update: After local training, we aggregate the float updates from the clients, and then
updates the float model on the cloud.

Different from the typical quantization-aware training, where a full-precision is usually kept during training, we only
keep the quantized model on the local devices, thus the memory will be saved when we load the quantized model.
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Federated Round

1. Quantize
float _— int f

4. Aggregate I 2. Broadcast l

3. Client Work Cli
1ent
float
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Quantization Method

* Forward Pass: We quantize the activations from the previous layer and apply low-bit matrix multiplication with the
quantized model weights.

+ Backward Pass: To avoid performance drop, we still calculate the full-precision gradient, where we de-quantize
the activation variable.

+ FedSGD: Once the full-precision gradient is calculated, we can aggregate the local model updates to the server.
+ FedAVG: Instead of updating the low-bit model weights, we de-quantize them and apply the gradients. Then, we

re-quantize it again for the next iteration.
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Quantization in FL
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Experiments

For FedSGD, we follow the IID training regime and only use a small batch size of 2 to meet the memory
requirement. We finetune the conformer-based model for 6000 steps. With our FedAQT framework, we show
that similar WER can be achieved with various bit-width compared to the full-precision model.

Bit-width | test-clean | test-other | dev-clean | dev-other
Float32 4.8 10.2 4.7 10.3
Intg 4.8 10.2 4.7 10.3
int4 4.9 10.3 4.7 10.3
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Experiments

In addition, we implement the real training process with fake gradients. On the broadcast stage, we distribute
quantized variables, namely int8 variables and float scales, to the clients. During the client computation, instead
of calculating the gradient for real int8 variables, we generate empty gradients as local updates and aggregate
them to update the server model. Compared to full-precision model, we could save around 40% of the memory.

Variable Dtype | Memory (KB) | Saving (KB)
Float32 734188 -
Float16 568012 166176
Int8 468312 265876
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